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Meta-QTL analysis reveals the important 
genomics regions for biotic stresses, nutritional 
quality and yield related traits in pearl millet
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Somashekhar Punnuri3* and Mahendar Thudi1,3,4*   

Abstract 

Pearl millet (Cenchrus americanus) is the sixth most significant cereal crop cultivated on 30 million ha and a staple diet 
for 90 million poor people across the globe. Besides abiotic stresses several biotic stresses have been limiting produc-
tion of pearl millet in the semi-arid and arid regions. Although, the Quantitative Trait Loci (QTLs) associated with key 
diseases like blast, rust and downy mildew resistance and nutritional content has been reported, the use of these 
QTLs is limited in breeding programs. To identify highly stable consensus genomic regions, we conducted Meta-QTL 
analysis using 191 QTLs reported in 12 independent studies over the last two decades. As a result, we report 34 Meta-
QTLs regions on a consensus genetic map comprising of 692 markers and spanning 2070.7 cM. The confidence inter-
val of Meta-QTLs was reduced by 3.63 folds (0.18–7.49 cM), in contrast to projected QTLs interval of 1.11–60.63 cM. 
Further, a total of 1198 genes were identified in 34 Meta-QTL regions. Among 34 Meta-QTL regions, Meta-QTL1.1 
is found to be region of significant importance as it harbours genes for enhanced biotic stress tolerance, plant growth 
and development as well as genes related with enhanced seed development. Meta-QTL2.4 has highest number 
of genes with a significant role in disease resistance which contains basic leucine zipper domain, zinc family, leucine 
rich repeat regions. Meta-QTL3.1 has ABC transporter like activity coupled with the ATPase activity which has a role 
in Fe and Zn uptake in leaves and root tissues. These Meta-QTL regions can be used in genomics-assisted breeding 
for enhancing the blast, rust downy mildew resistance as well as yield and nutritional traits.
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Background
In the climate change scenarios attaining sustainable 
crop production and meeting the global food and nutri-
tional security has been quite challenging. Besides major 
staple foods, millets are gaining importance and possess 
the potential to overcome these crises as they are nutri-
tionally rich and are climate resilient. The food security 
of the world could be stabilized by increasing the produc-
tion of climate resilient and native crops like pearl mil-
let (Chaturvedi et al. 2022). Recognizing the importance 
of millets, the United Nations declared year “2023” as 
the International year of millets. Pearl millet (Cenchrus 
americanus also called as Pennisetum glaucum, 
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2n = 2x = 14) is the second-most important millet after 
sorghum. It serves as  an important alternative crop for 
feed, food, fodder and relay crop in Brazil, Canada, Mex-
ico, the United States, West Asia and North Africa region 
and Central Asia (Yadav et al. 2021). Globally it is culti-
vated on about 30 million ha in more than 30 countries. 
In India it is cultivated on 6.93 million ha with average 
production of 8.61 million tons (Satyavathi et  al. 2021). 
Its cultivation may also expand in the maize and sorghum 
cultivation areas, because of lowering the level of water 
resources. It is a climate-resilient, nutritionally rich crop 
and valued for its quality fodder. Its adaptability to harsh 
climates, including low fertile soil, high pH, high soil  
 Al3+ saturation, low phosphorous, low soil moisture, high 
temperature, high salinity and inadequate rainfall, makes 
it a versatile and robust choice for agricultural diversifica-
tion (Gemenet et  al. 2015; Kumar et  al. 2017; Varshney 
et al. 2017).

In recent years pearl millet is being preferred as it con-
tains three to five times more nutrition than majority of 
the cereals and also it is gluten-free and has slow-digesting 
starch (Serba et  al. 2020; Gowda et  al. 2022). To escape 
from drought stress, early maturing cultivars have been 
developed for drought-prone regions (Yadav et  al. 2011) 
and during the last decade, heat stress tolerance has been 
reported in the northern and western part of India (Yadav 
and Rai 2013). But biotic stresses such as downy mildew, 
rust and blast  cause severe damage, which hampers the 
nutritional content, growth and development of pearl 
millet (Ambawat et  al. 2016; Soriano et  al. 2021). Annual 
grain losses due to downy mildew may be up to 80% (Chel-
puri et al. 2019), due to blast disease, it ranges from 10 to 
30% (Nayaka et  al. 2017) and due to rust it is up to 76% 
(Ambawat et  al. 2016). Compared to other major cereals 
and legumes, very few efforts were made to identify the 
promising genomic regions responsible for various biotic 
and abiotic stresses, agronomic traits and quality related 
traits in pearl millet. Improvement of agronomic traits like 
early flowering, bold-seeded and dwarf genotype are the 
most important factors to increase the seed grain produc-
tion and to improve the climate-resilience of the pearl mil-
let in harsh conditions (Punnuri et  al. 2016; Kumar et  al. 
2021). Several studies have been conducted to investigate 
the genetic mechanisms underlying yield and its constitu-
ent attributes in pearl millet, leading to the discovery of 
several quantitative trait loci (QTLs) associated with these 
traits. For instance, five large effect QTLs for resistance to 
three different races of the Downy mildew pathogen were 
reported on linkage group that explained 16.7 to 78.0% 
phenotypic variance (Chelpuri et  al. 2019). In addition, 
two major blast resistant QTLs on linkage group 4 and 7 of 
the 863B-P2 line have been discovered by using molecular 
markers (Singh et al. 2018). The most stable QTL for rust 

resistance was identified on linkage group 1, that explained 
58% phenotypic variation (Ambawat et  al. 2016). Never-
theless, based on 3 years consecutive data (2014–17) from 
three locations (Delhi, Dharwad, and Jodhpur), 14 QTLs 
for iron (Fe) and 8 QTLs for zinc (Zn) were identified that 
explained 2.85 to 19.66% and 2.93 to 25.95% phenotypic 
variance, respectively (Singhal et  al. 2021). Minor QTLs 
are identified for leaf spot resistance in linkage group 5 and 
7, with LOD score above 3 and PVE (Phenotypic Varia-
tion Explained) ranging from 4.83 to 5.05% (Punnuri et al. 
2016).

Identification of robust consensus genomic regions 
that harbor QTLs for multiple traits can enhance the 
transferability of the QTLs for trait improvement though 
genomics assisted breeding. In recent years, Meta-
QTL studies were performed to identify the consensus 
genomic regions in most of the major crops like wheat 
(Acuna-Galindo et  al. 2015; Soriano et  al. 2019), rice 
(Khahani et al. 2021; Sandhu et al. 2021), maize (Sheoran 
et  al. 2022; Gupta et  al. 2023), pulses (Klein et  al. 2020; 
Arriagada et  al. 2023) and sorghum (Aquib and Nafis 
2022). In the present study we report 34 Meta-QTLs 
deploying the QTLs studies published over the last two 
decades. In addition, we also report the key genes in 
these Meta-QTL regions that can be deployed in pearl 
millet breeding for developing improved varieties.

Materials and methods
Compilation of QTLs from public domain
An extensive literature search was done to compile QTLs 
for different traits in pearl millet that were published 
between 2013 and 2022. These QTLs were systematically 
grouped into five major trait categories (i) morphologi-
cal and physiological traits (plant height, canopy struc-
ture and water use); (ii) phenological traits (flowering 
time); (iii) yield and yield related traits (grain size, pani-
cle length, panicle diameter, 1000 grain weight, seed 
yield per plant, biomass and crop production); (iv) biotic 
traits (blast, downy mildew and rust) and (v) nutritional 
traits (Fe and Zn content). The number of QTLs for each 
trait group ranged from 14 to 93 which is described 
(Table  1). A total 191 QTLs that contained 136 major 
QTLs (PVE ≥ 10%) and 55 minor QTLs (PVE < 10%) were 
selected for the Meta-QTL analysis (Additional file  1). 
The confidence interval (CI) of the QTLs was calculated 
using the following equations for recombinant inbred 
lines (RIL) and  F2 populations (Darvasi and Soller 1997; 
Guo et al. 2006).

For RIL populations,

For  F2 populations,

C.I. =
163

P × R2
and
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where P refers to the size of the population and  R2 refers 
to the phenotypic variation explained. The absolute, start 
and end positions of the QTLs were also determined for 
the QTL projection and the Meta-QTL analysis.

Construction of consensus map
For constructing consensus map, LP merge package in “R 
studio” was used (Endelman and Plomion 2014). The LP 
merge package is based on the linear programming which 

C.I. =
530

P × R2
.

was used to minimise the error for the markers between 
linkage groups and the consensus map. The marker name 
and its position from each linkage map reported in the 
original QTL studies have been included in the con-
struction of the consensus linkage map. While in case 
of genetic maps with large number of markers, like Pun-
nuri et al. (2016) we have only used markers flanking the 
QTLs. The LP merge package in R creates “n” number of 
models for the consensus map. It creates a weighted as 
well as unweighted consensus map from the original link-
age maps. The best consensus map was selected on the 

Table 1 Summary of QTLs used for Meta-QTL analysis that were reported between 2013 and 2022

Trait Trait code Mapping population Population 
type

Population size Number 
of QTLs

Reference

Morphological and physiological traits

Plant height PH ICMB 841-P3 × 863B-P2 RIL 106 13 Kumar et al. (2017)

ICMS 8511-S1-17-2-1-1-B-P03 × AIMP 
92901-S1-183-2-2-B-08

RIL 317 12 Kumar et al. (2021)

Canopy structure CS ICMR1029 × ICMR1004 NIL 162 3 Tharanya et al. (2018)

Water use WU ICMR1029 × ICMR1004 NIL 162 4 Tharanya et al. (2018)

Phenological traits

 Days to 50% flowering FT ICMB 841-P3 × 863B-P2 RIL 106 6 Kumar et al. (2017)

Tift 99D2B1 × Tift 454 RIL 186 3 Punnuri et al. (2016)

ICMS 8511-S1-17-2-1-1-B-P03 × AIMP 
92901-S1-183-2-2-B-08

RIL 317 1 Kumar et al. (2021)

Yield and yield related traits

Grain size GS 81B × 4025-3-2-B F2 188 7 Vengadessan et al. (2013)

Panicle length PL ICMB 841-P3 × 863B-P2 RIL 106 11 Kumar et al. (2017)

ICMS 8511-S1-17-2-1-1-B-P03 × AIMP 
92901-S1-183-2-2-B-08

RIL 317 4 Kumar et al. (2021)

81B × 4025-3-2-B F2 188 10 Vengadessan et al. (2013)

Panicle diameter PD 81B × 4025-3-2-B F2 188 5 Vengadessan et al. (2013)

1000 grain weight TGW ICMB 841-P3 × 863B-P2 RIL 106 14 Kumar et al. (2017)

PPMI 683 × PPMI 627 RIL 210 13 Singhal et al. (2022)

ICMS 8511-S1-17-2-1-1-B-P03 × AIMP 
92901-S1-183-2-2-B-08

RIL 317 2 Kumar et al. (2021)

Seed yield per plant SYPP PPMI 683 × PPMI 627 RIL 210 14 Singhal et al. (2022)

Biomass BM ICMR1029 × ICMR1004 NIL 162 2 Tharanya et al. (2018)

Crop production CP ICMR1029 × ICMR1004 NIL 162 11 Tharanya et al. (2018)

Biotic traits

Blast BR J-2537 × ICMB-95444 F2 36 2 Maganlal et al. (2018)

Tift 99D2B1 × Tift 454 RIL 186 4 Punnuri et al. (2016)

Downy mildew DMR ICMB 89111B-P6 × ICMB 90111B-P6 RIL 187 5 Chelpuri et al. (2019)

 Rust RR 81B-P6 × ICMP 451-P8 RIL 168 3 Ambawat et al. (2016)

Nutritional traits

Fe content Fe ICMB 841-P3 × 863B-P2 RIL 106 3 Kumar et al. (2016)

ICMS 8511-deriv × AIMP 92901-deriv-08 RIL 317 8 Kumar et al. (2018)

PPMI 683 × PPMI 627 RIL 210 13 Singhal et al. (2021)

Zn content Zn ICMB 841-P3 × 863B-P2 RIL 106 3 Kumar et al. (2016)

ICMS 8511-deriv × AIMP 92901-deriv-08 RIL 317 7 Kumar et al. (2018)

PPMI 683 × PPMI 627 RIL 210 8 Singhal et al. (2021)
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basis of the least Root Mean Square Error (RMSE) value 
and the minimum length of the consensus map.

QTL projection and Meta‑QTL analysis
The input files containing linkage map and QTL infor-
mation were independently made  for Biomercator v4.2 
to perform Meta-QTL analysis. The QTLs were pro-
jected using the QTL Projection tool in the Biomercator 
v4.2 software (Arcade et al. 2004; https:// mybio softw are. 
com/ biome rcator- genet ic- maps- qtl- integ ration. html). 
Meta-QTL analysis was performed using “Veyrieras”, a 
two-step algorithm (Veyrieras et  al. 2007) in Biomerca-
tor v4.2. In the first step (1/2), the three best parameter 
values are chosen among the following five parameters 
i.e. Akaike Information Criterion (AIC), Corrected AIC 
(AICc), AIC model 3 (AIC3), Bayesian Information Cri-
terion (BIC) and Average Weight of Evidence Criterion 
(AWE). The best Meta-QTL model, which has the lowest 
value and highest weight, is selected. In the second step 
(2/2), the selected model having the number of Meta-
QTLs detected is visualized and a file is created by the 
software that has information on all the detected Meta-
QTLs, i.e. the CI,  their position and the number of QTLs 
present within the Meta-QTL.

Detection of candidate genes underlying the Meta‑QTL 
regions
To identify the candidate genes in the Meta-QTL regions, 
the physical position of the markers flanking Meta-
QTL regions was determined using pearl millet genome 
assembly (Varshney et al. 2017). We retrieved the num-
ber of genes from the identified Meta-QTL regions using 
the information available for pearl millet at Centre of 
Excellence in Genomes and Systems Biology (https:// 
cegsb. icris at. org/ opena ccess data/). The Gene annota-
tion data of these genes and their predicted function was 
retrieved using GigaDB database.

Results
The distribution of QTLs from original studies
In order to identify the consensus genomic regions for 
different traits, a total of 340 QTLs from 17 studies, for 
20 different traits were compiled. Of these, we chose 
191 QTLs for 16 traits by excluding the QTLs that are 
reported using RLFP or anonymous markers (Additional 
file 1). The selected QTLs were from 12 studies contain-
ing nine bi-parental mapping populations. The popula-
tion size of the bi-parental mapping populations varied 
from 106 to 317 lines (Table  1). Among 191 QTLs, 147 
were based on RIL population, 20 were based on near 
isogenic lines (NIL) population and 24 were based on  F2 
population. The number of QTLs per linkage group var-
ied from 16 (on PgLG04) to 51 (on PgLG02) (Additional 

file  1). The CI of these 191 QTLs ranged from 1.11 to 
60.63 cM (centiMorgan) with an average of 10.86 cM.

QTL projection and construction of a consensus map
The consensus map covers 2070.7 cM distance and con-
tains 692 markers across the seven linkage groups in 
pearl millet. The generated consensus map consists of 
SSR (312), SNP (14) and DArT (366) markers (Additional 
file  2). The length of each linkage group varied from 
147.6 cM (PgLG02) to 510.8 cM (PgLG06). The number 
of markers mapped in each linkage group of consensus 
map varied from 72 (PgLG03) to 147 (PgLG01). Further, 
on an average the overall marker density was 0.33 mark-
ers/cM while it varied from 0.19 markers/cM (PgLG06) 
to 0.73 markers/cM (PgLG02) on individual linkage 
groups (Additional file  3). Over all the QTLs projected 
on each linkage group varied between 16 (PgLG04) and 
51 (PgLG02) (Fig. 1). Minimum of two QTLs (blast resist-
ance) and a maximum of 29 QTLs (1000 grain weight) 
were projected on the consensus map developed in the 
present study (Fig. 1).

Identification of Meta‑QTLs
Based on the initial QTL projection and the newly devel-
oped consensus map, the Meta-QTL regions were deter-
mined by using Veyrieras’s algorithm. A minimum of 
two overlapping QTLs associated with minimum two 
different traits are referred to as the Meta-QTL regions. 
As a result, of 191 QTLs, 126 QTLs were clustered into 
34 Meta-QTLs regions (Fig.  1). Nevertheless, 65 QTLs 
which were either singlets or that did not have overlap-
ping regions, could not be mapped in any of these 34  
identified  Meta-QTL regions. Within the seven link-
age groups, the highest (7 Meta-QTL) number of Meta-
QTLs was identified on PgLG01, PgLG02 and PgLG03, 
while the least (1 Meta-QTL) number was observed on 
PgLG07. Further, we identified five Meta-QTLs each on 
PgLG05 and PgLG06, and two Meta-QTLs on PgLG04. 
The CI of Meta-QTLs ranged from 0.18  cM (Meta-
QTL2.7) to 7.49 cM (Meta-QTL4.2) which is significantly 
lower than the CI of the projected QTLs (Fig. 2). On an 
average the CI of Meta-QTLs across all linkage groups is 
2.99  cM. So, there is a significant decrease in the CI of 
Meta-QTLs (2.99 cM) compared to the projected QTLs 
(10.86 cM). There is a 3.63 fold, or 72.46% decrease in the 
CI of Meta-QTL compared to the projected QTLs. The 
markers flanking the Meta–QTL regions are retrieved. 
Along with the flanking markers, information of position, 
CI (95%) and number of QTL associated on each Meta-
QTL region is summarized (Table 2). The 34 Meta-QTL 
regions have an average CI of 2.99 cM compared with the 
average CI of the projected QTLs which were 10.86 cM. 
A 34.03% reduction in the number of QTLs occurred 

https://mybiosoftware.com/biomercator-genetic-maps-qtl-integration.html
https://mybiosoftware.com/biomercator-genetic-maps-qtl-integration.html
https://cegsb.icrisat.org/openaccessdata/
https://cegsb.icrisat.org/openaccessdata/
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compared to the projected QTLs, and these clustered 
together to form the highly stable Meta-QTL region with 
the lower confidence interval. These 34 detected Meta-
QTLs covers 101.93 cM distance across all the seven link-
age groups and are found to be stable and are considered 
for the further study in the candidate gene identification.

Candidate genes identification from the Meta‑QTL region
A total of 1198 genes were identified in 34 Meta-QTL 
regions on seven linkage groups of pearl millet. The 
number of genes identified in each Meta-QTL var-
ied from two (Meta-QTL1.4 and Meta-QTL6.2) to 
162 (Meta-QTL2.4). However, no genes were found in 

Fig. 1 Consensus genetic map with projected QTLs and Meta-QTLs. Each green line on the graph represents a marker and its corresponding 
position. The projected QTLs are categorized based on the various traits type, namely biotic stress resistance related traits (Sky-blue), nutritional 
related traits (Green), phenological related traits (Dark blue), morphological and physiological traits (Saddle brown) and yield and yield related traits 
(Black). The Meta-QTL region is represented by red colour. The width of each projected QTL and Meta-QTLs corresponds to the confidence interval 
of them

Fig. 2 Graphical representation of projected QTLs and Meta-QTLs. The confidence intervals of projected (represented in steel blue colour) 
and Meta-QTLs (represented in orange colour) of each linkage group as well as all linkage groups combined (referred to as All PgLGs). The outliers 
are represented as black dots
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Meta-QTL2.7, Meta-QTL3.7, Meta-QTL5.5 and Meta-
QTL7.1 (Table 2). Among 1198 genes, 7.93% genes (96) 
code for proteins with unknown function or domain of 
unknown function or uncharacterized protein genes 
(Additional file 3). A total 70, 47, 25, 13, 10 and 6 genes 
are found across all Meta-QTL regions which are found 

to be associated with Serine/threonine protein kinase 
activity, Zinc finger family domain, NB-ARC gene fam-
ily, F-box cyclin like domain, ABC transporter like activ-
ity coupled with the ATPase activity and Basic leucine 
zipper domain. These genes belong to a wide range of 
genes family and domains. These functionally annotated 

Table 2 Summary of Meta-QTLs and genes identified in this study

Meta‑QTL ID Linkage group Position Confidence 
interval 
(95%)

Flanking markers No. of QTL 
in Meta‑
QTL

Traits Number 
of genes

Absolute Start End

Meta-QTL1.1 PgLG01 0.17 0 0.85 0.68 IPES0017-S1_3590 8 PH, RR, TSW, PL, SYPP, 
BR, FT

65

Meta-QTL1.2 PgLG01 16.04 13.69 18.43 4.78 Xipes0017-Xpsms39 4 FT, GS, RR, PL 11

Meta-QTL1.3 PgLG01 22.18 20.315 24.04 3.73 Xpsms39-IPES0042 6 SYPP, GS, RR, PL, TSW 4

Meta-QTL1.4 PgLG01 26.86 24.45 29.26 4.81 Xpsms39-IPES0042 6 Fe, RR, GS, SYPP, TSW, 
PL

2

Meta-QTL1.5 PgLG01 51.4 50.81 51.98 1.17 Xpsmp2069-
PSMP2069

2 Fe, Zn 47

Meta-QTL1.6 PgLG01 61.83 60.38 63.28 2.9 Xismp3017-IPES0098 4 PH, PL, FT 35

Meta-QTL1.7 PgLG01 86.69 85.77 87.6 1.83 pgpb9684-IPES0203 2 PL, SYPP 30

Meta-QTL2.1 PgLG02 0.42 0 1.165 1.49 IPES0123-Xpsmp2201 9 SYPP, CP, TSW, PH 40

Meta-QTL2.2 PgLG02 23.97 23.13 24.81 1.68 Xibmsp31-
Xpsmp2231

10 CP, PH, TSW 14

Meta-QTL2.3 PgLG02 58.42 57.595 59.245 1.65 Xpsmp2237-S2_7773 6 WU, BM, BR, CS, PL 23

Meta-QTL2.4 PgLG02 86.81 85.11 88.51 3.4 Xipes027-Xibmcp8 5 BR, WU, CP, PH 162

Meta-QTL2.5 PgLG02 101.86 101.34 102.38 1.04 Xipes0181-
pgpb11717

4 PL, WU, CP, BM 13

Meta-QTL2.6 PgLG02 132 130.62 133.38 2.76 pgpb11552-
pgpb6832

2 TSW, FT 31

Meta-QTL2.7 PgLG02 139 138.91 139.09 0.18 pgpb6832-IPES0181 6 Fe, Zn 0

Meta-QTL3.1 PgLG03 0.68 0 1.78 2.2 ICMP4014-IPES0161 7 GS, Zn, TSW, PH, BR, FT 20

Meta-QTL3.2 PgLG03 38 36.6 39.4 2.8 Xpsmp2267-
PSMP2214

2 PH, FT 104

Meta-QTL3.3 PgLG03 47.98 46.9 49.05 2.15 Xpsmp2227-
Xpsmp2214

4 Fe, PH, Zn 8

Meta-QTL3.4 PgLG03 61.91 60.37 63.44 3.07 IPES0233-pgpb9069 2 Fe, TSW 37

Meta-QTL3.5 PgLG03 104.99 103.48 106.49 3.01 IPES0180-Xpsm2222 3 Fe, Zn, PL 108

Meta-QTL3.6 PgLG03 120.71 119.5 121.91 2.41 Xpsms17-IPES0220 6 Fe, Zn, PL, PD 36

Meta-QTL3.7 PgLG03 143.99 143.49 144.48 0.99 pgpb6901-Xpsms31 2 PH, PL 0

Meta-QTL4.1 PgLG04 2.78 1.54 4.02 2.48 Xpsm77-Xipes0225 5 RR, PH, Fe, Zn 27

Meta-QTL4.2 PgLG04 33.81 30.06 37.55 7.49 IPES0208-Xpsmp2084 2 PH, PL 61

Meta-QTL5.1 PgLG05 1.73 0.09 3.36 3.27 S5_1669-Xpsmp2261 5 FT, SYPP, PH 33

Meta-QTL5.2 PgLG05 21.31 20.1 22.52 2.42 IPES0093-Xipes094 6 Fe, SYPP, LSD 31

Meta-QTL5.3 PgLG05 31.44 28.99 33.89 4.9 S5_2145-Xicmp3085 3 BR, PD, Fe 57

Meta-QTL5.4 PgLG05 111.52 109.31 113.72 4.41 Xpsmp2064-Xpsms74 3 Zn, SYPP 4

Meta-QTL5.5 PgLG05 125.83 122.93 128.73 5.8 PSMP2261-IPES0223 4 PH, PD, SYPP 0

Meta-QTL6.1 PgLG06 5.09 4.12 6.06 1.94 ICMP3002-Xipes0167 8 SYPP, TSW, PL, TGW 34

Meta-QTL6.2 PgLG06 27.76 26.59 28.93 2.34 BRP53-IPES0176 2 PH, TSW 2

Meta-QTL6.3 PgLG06 56.28 53.19 59.36 6.17 Xipes035-IPES0085 3 PL, RR 62

Meta-QTL6.4 PgLG06 73.82 70.89 76.74 5.85 BRP90-BRP65 3 PL, RR 50

Meta-QTL6.5 PgLG06 89.62 87.96 91.27 3.31 Xipes0176-Xipes0071 2 TSW, GS 47

Meta-QTL7.1 PgLG07 197.64 196.23 199.05 2.82 Xipes0198-PSMP2263 3 Fe, Zn, TSW 0



Page 7 of 11Gupta et al. CABI Agriculture and Bioscience            (2024) 5:36  

genes  with their predicted function can be related to 
biological pathway which may or may not be associ-
ated with traits in the Meta-QTL regions. The candidate 
genes which code for Serine/theronine protein kinase, 
NB-ARC, disease resistance protein, pectinesterase, 
F-box domain, Heat shock proteins, DEAD box domain, 
NAD(P) binding domain, SANT/Myb domain, No api-
cal meristem protein, Heavy metal associated protein, 
U–box domain, WD—40 domain, Guanine nucleotide 
binding protein, Zinc finger protein family, wall associ-
ated kinase, etc. has been identified in the 34 Meta-QTL 
regions (Additional file 4).

Discussion
Globally, pearl millet is the sixth most important cereal 
crop after rice (Oryza sativa), wheat (Triticum aesti-
vum), maize (Zea mays), barley (Hordeum vulgare) and 
sorghum (Sorghum bicolor) (Satyavathi et  al. 2021). 
Being cultivated on 30 million ha and a staple food for 
90 million poor people in the arid and semi-arid tropical 
regions of Asia and Africa, it plays an important role in 
global food and nutritional security. Although wheat and 
rice were predominantly grown crops in the post green 
revolution era, the global food and nutritional demands 
are not being met alone from the major crops. Although 
the biological potential of pearl millet is 4–5 tons/ha, it 
has not been fully realized (Yadav et al. 2021). Pearl millet 
besides being rich in nutrition, it is a drought hardy crop 
that withstands higher temperatures and can be grown on 
marginal soils with minimum inputs (Sehgal et al. 2015; 
Varshney et al. 2017). Efforts at national and international 
level in the past two decades provided an understanding 
of the genomic regions responsible for various traits like 
blast (Punnuri et  al. 2016; Maganlal et  al. 2018), downy 
mildew (Chelpuri et al. 2019), rust (Ambawat et al. 2016), 
drought tolerance (Sehgal et  al. 2015) and nutritional 
traits have been identified. In addition, HHB67 improved, 
the first molecular breeding product resistant to downy 
mildew has been released for commercial cultivation in 
the case of pearl millet (Hash et al. 2006a, b). Neverthe-
less, the resistance has been broken down over years and 
efforts are also made to enhance the resistance. Further, 
a limited used of the QTLs reported for various traits is 
seen in pearl millet breeding programs (Gray et al. 2022). 
It could be due to the non-transferability of these QTLs 
owing to their background specificity or lack of identi-
fication of consensus genomic regions for these traits 
that enable them to be used in genomics assisted breed-
ing. Identification of consensus genomic regions where 
major effect QTLs are consistently reported in various 
studies pinpoint its major role in regulating the particu-
lar trait to be further used efficiently in the genomics-
assisted breeding program (Sandhu et  al. 2021). During 

recent years consensus genomic regions were identified 
using Meta-QTL analysis in several other crops (Acuna-
Galindo et al. 2015; Soriano et al. 2019; Klein et al. 2020; 
Khahani et al. 2021; Sandhu et al. 2021; Aquib and Nafis 
2022; Sheoran et  al. 2022; Arriagada et  al. 2023; Gupta 
et al. 2023) which enabled the use of the QTLs in enhanc-
ing the traits and developing superior cultivars.

To examine the relative positions of QTLs mapped 
using different molecular marker, a consensus map was 
constructed by including markers from all the map-
ping experiments. We used 9 genetic maps to develop 
a consensus map comprising of 692 markers spanning 
2070.7 cM. Earlier genetic maps reported a maximum of 
171 markers spanning 898.9 cM (Rajaram et al. 2013). We 
consider this map as robust consensus map as the marker 
order was conserved in original maps as well as the 
marker density increased in individual linkage groups. 
Similar results were reported in case of wheat where the 
individual consensus linkage groups are denser than the 
original linkage map, preserving its original marker order 
on the individual map (Soriano et al. 2021). Utilizing an 
integrated consensus map and initial QTL projections, 
Meta-QTL analysis was conducted. Out of 191 QTLs, 
126 QTLs were mapped in the 34 Meta-QTLs region that 
included 22 morphological and physiological trait QTLs, 
8 phenological trait QTLs, 60 yield and yield related 
trait QTLs, 7 biotic stress and 29 nutritional trait related 
QTLs (Fig. 1). 34.03% of QTLs could not be mapped in 
the Meta-QTLs due to lack of flanking or overlapping 
regions. The CI of the Meta-QTLs is reduced by 3.63 
folds or 72.46% decrease compared to reported QTLs in 
independent studies. Similarly, 5.24 folds reduction of CI 
was reported in case of rice (Sandhu et al. 2021), 5.2 folds 
in case of wheat (Soriano et al. 2019) and 46% in case of 
sorghum (Aquib and Nafis 2022). The higher fold reduc-
tion indicates that these Meta-QTL regions are high con-
fidence regions which can be used for introgression and 
trait improvement. Similarly, such reduction in number 
of QTLs mapped in Meta-QTL regions and reduction in 
CI is common, as observed and reported in various crop 
studies. For instance, in case of wheat, of 368 QTLs only 
316 QTLs were mapped in the 84 Meta-QTL regions and 
CI reduction is 80% (Soriano et  al. 2021). While in the 
case of rice, a significant reduction of 63.2% and 80% in 
the number and CI of the Zn QTLs, respectively (Joshi 
et al. 2023).

Key genes in Meta‑QTL regions
In the Meta-QTL1.1, 14 NB–ARC  family associated 
genes (nucleotide-binding adaptor shared by APAF-1, 
R proteins and CED-4) play a role in plant growth and 
development. In previous transcriptomic studies, it has 
been reported that NB–ARC  genes play an important 
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role in the downy mildew resistance response in pearl 
millet (Kulkarni et  al. 2016). In case of rice, NB–ARC  
gene family was reported to be associated with plant 
panicle development (Pan et al. 2022). Further, the QTLs 
for panicle development are present in Meta-QTL1.1 
which can imply that NB-ARC  genes can be used for 
enhancing the panicle development in pearl millet. Fur-
ther, Meta-QTL1.1 also harbours QTLs for rust and blast 
resistance where two genes (Pgl_GLEAN_10018238 and 
Pgl_GLEAN_1003685) that encode for heat shock pro-
teins were also present. Heat shock proteins in plants 
were reported to act as a chaperone which possess a role 
in biotic stress tolerance. It plays a crucial role primar-
ily in abiotic stresses such as heat and drought and has 
also been characterized in pearl millet through tran-
scriptome analysis (Sun et  al. 2020). Meta-QTL1.1 also 
harbours QTLs for flowering time and seed yield related 
traits. The F–box or cyclin like domain associated genes 
(Pgl_GLEAN_10025151 and Pgl_GLEAN_10018241) 
are present in Meta-QTL1.1 were reported to be asso-
ciated with many biological processes such as pathogen 
resistance, embroyogenesis, seedling development, floral 
organogenesis (Xu et  al. 2009). These indicate that this 
Meta-QTL may contribute significantly to biotic stress 
responses as well as overall development. Two genes 
(Pgl_GLEAN_10023785 and Pgl_GLEAN_10023786) 
in Meta-QTL1.6 encode for BURP domain, which 
was earlier reported to play a role in plant develop-
ment and is found only in plants (Sun et  al. 2019). This 
Meta-QTL also encompasses genes encoding Leucine-
rich repeat (LRR) proteins, which play a crucial role in 
biotic and abiotic stresses responses. LRRs are recog-
nized as versatile protein recognition domains found 
in over 14,000 proteins (Matsushima and Miyashita 
2012). Hence, this Meta-QTL may play a crucial role in 
a wide range of adaptability. Identified genes in other 
Meta-QTL regions, such as those from the multicop-
per oxidase family (in Meta-QTL6.3), cytochrome P450 
family (in Meta-QTL1.1, Meta-QTL2.1, Meta-QTL2.3, 
Meta-QTL2.4, Meta-QTL3.2, Meta-QTL3.4, Meta-
QTL3.6 and Meta-QTL5.2), and ferredoxin reductase 
family (in Meta-QTL1.5 and Meta-QTL6.3), were pre-
viously identified and found to be up-regulated in the 
transcripts of pearl millet genotypes with high levels of 
both Fe and Zn (Satyavathi et al. 2022). The cytochrome 
P450 encoded genes identified in this analysis were pre-
viously reported to play a major role in the response to 
blast disease in pearl millet (Singh et al. 2022a, b). They 
could be utilized in future breeding programs. The 
genes Pgl_GLEAN_10031299 (in Meta-QTL2.4) and 
Pgl_GLEAN_10001734 (in Meta-QTL3.2) encode for 
pathogenic type III effector avirulence factor Avr cleav-
age site. The Avr proteins enhance host immune response 

against pathogen infection (Kim et  al. 2009). The genes 
Pgl_GLEAN_10037945 and Pgl_GLEAN_10037946 pre-
sent in MQTL3.4 and Pgl_GLEAN_10021100 present 
in Meta-QTL5.3 are associated with the alcohol dehy-
drogenase superfamily and are reported to be involved 
in the development of seeds (Su et  al. 2020). The gene 
Pgl_GLEAN_10035410 found in Meta-QTL5.2 encodes 
for U-box protein. In a recent study, U-box proteins 
were reported to be up-regulated during biotic stress in 
case of tomato (Sharma and Taganna 2020). The Meta-
QTL5.2 harbours QTLs for blast resistance, hence, U-box 
proteins may be implicated to play a role in blast resist-
ance, which can be further explored in separate study. 
The MYB gene family represents a significant transcrip-
tion factor family in plants. These proteins encoded 
genes were identified within the regions of Meta-QTL1.1, 
Meta-QTL1.5, Meta-QTL2.2, Meta-QTL2.4, Meta-
QTL3.1, Meta-QTL3.4, Meta-QTL3.6, Meta-QTL4.2, 
Meta-QTL5.3 and Meta-QTL6.3. MYB transcription fac-
tors play a crucial role in various plant processes, includ-
ing responses to biotic and abiotic stresses, development, 
plant growth, synthesis of secondary metabolites,  cell 
cycle regulation and hormonal signalling (Wang et  al. 
2021; Chanwala et al. 2023).

The genes that encode ABC transporter like activ-
ity coupled with ATPase activity are present in Meta-
QTL regions that contained the QTLs for Zn and Fe. 
In a recent study, using RNA-sequencing data, ABC 
transporter genes were reported to play a role in Fe and 
Zn uptake and their transport in leaf and root tissue 
(Goud et  al. 2022). Similarly, 24 genes that encode for 
LRR are found in Meta-QTLs regions, where the biotic 
stress resistance QTLs are reported in pearl millet. Six 
genes (Pgl_GLEAN_10019857, Pgl_GLEAN_10017573, 
Pgl_GLEAN_10020454, Pgl_GLEAN_10031316, Pgl_
GLEAN_10010384 and Pgl_GLEAN_10027732) that 
encode for the basic leucine zipper domain are present 
in Meta-QTL1.7, Meta-QTL2.4, Meta-QTL3.2, Meta-
QTL3.5 were reported to be involved in plant growth and 
development along with the biotic stress response (Sor-
naraj et al. 2016). In maize, it has been reported that ser-
ine/threonine protein kinase proteins are associated with 
floret number and ear length, contributing to grain yield. 
This underscores the significance of this gene in the con-
text of crop improvement (Jia et al. 2020).

Conclusion
We report a consensus genetic map with 34 Meta-QTL 
regions, where the overall CI is reduced by 3.63 folds 
or 72.46% compared to the projected QTLs. Among 
34 Meta-QTL regions, Meta-QTL1.1 is found to be 
region of significant importance as it harbours genes 
for enhanced biotic stress tolerance, plant growth and 
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development as well as genes related with enhanced 
seed development. Meta-QTL2.4 has highest num-
ber of genes with a significant role in disease resist-
ance which contains basic leucine zipper domain, zinc 
family, leucine rich repeat regions. Meta-QTL3.1 has 
ABC transporter like activity coupled with the ATPase 
activity which has a role in Fe and Zn uptake in leave 
and root tissue. These Meta-QTL regions can be used 
in genomics assisted breeding for enhancing the blast, 
rust, downy mildew resistance as well as yield and 
nutritional traits.
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