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Abstract 

Background  In southern central rift valley of Ethiopia, maize is an important crop because of its adaptation to wider 
agro-ecologies and higher yield potential. However, most cultivars were not parameterized to include in the database 
of Decision Support System for Agro-technology Transfer (DSSAT). As a result simulation of growth and yield of those 
cultivars was not possible under changing climate.

Methods  Two set of independent crop, management and soil data were used for calibration and validation 
of genetic coefficients of maize cultivars (BH-540, BH-546, BH-547, Shala and Shone) under condition of historic 
weather (1990–2020). Later, we simulated the growth and yield of maize using twenty multimodel climate ensembles 
across RCP 4.5 and 8.5 during early, medium and late century across Shamana, Bilate, Hawassa and Dilla clusters using 
DSSATv4.8 model.

Results  Cultivars BH-540, BH-546, BH-547, Shala and Shone produced yields of 5.7, 5.4, 5.2, 6.9 and 7.4 t ha−1 
with the corresponding error percentage of − 0.1, − 0.8, − 1.0, − 6.1 and 2.6%. The results of normalized root mean 
square were 1.14–4.2 and 3.0–3.9%, for grain yield during calibration and validation, respectively showing an excel-
lent rating. The simulation experiment produced 5.4–9.2 t ha−1 for grain yield of maize cultivars across the study 
areas, which is likely to fall close to 63.3% by 2070 if right adaptation options are not introduced necessitating switch 
in cultivars and production areas.

Conclusions  There is critical need for reduction of GHGs emissions, generation of innovative adaptation strategies, 
and development of drought and heat stress tolerant maize cultivars. Hence, researchers and policy makers shall act 
with utmost urgency to embark with breeding programs that target climate change adaptation traits in maize crop.
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Introduction
Assessment of crop yield response to climate risks is 
commonly carried out using either machine learning, 
regression, or process-based tools (Leng and Hall 2020). 
Since recently, process-based models are being used to 
simulate crop growth and development by integrating 
genotypic, environmental, and management information 
(Kalra et al. 2008) into a comprehensive expression. The 
same is used to evaluate the impact of climate on crop 
production as a result of increased greenhouse gases 
emission into the atmosphere (White et al. 2011), and to 
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generate compatible adaptation responses for sustain-
able agricultural production (Aggarwal et al. 2006). One 
of the contemporary support tools is DSSAT; in which a 
set of independent modules that operate simultaneously 
using soil, climate, crop, and agronomic management 
databases (Jones et al. 2003). In Ethiopia, improved deci-
sion support tools (DSTs) have been in use over the last 
couple of decades in the interest of modernizing research 
data for improving agricultural productivity under vary-
ing climate scenarios (Yimer et al. 2022; Feleke et al. 2021; 
Liben  et al. 2018; Jemal 2018; Kassie  et al. 2014). How-
ever, the progress in using crop models in agronomic 
studies and accurate simulation of crop production for 
different agro-ecological conditions has been slow due to 
the complexity of the relevant biophysical processes asso-
ciated with uncertainty (Feleke et al. 2021), and the scar-
city of relevant datasets (Leng and Hall 2020).

It is crucial to expand the body of information about 
site-specific calibration and validation procedures, 
particularly the identification of crop cultivar-specific 
genetic coefficients for crop model evaluation, in order to 
logically guide the application of crop-climate modeling 
research (Hoogenboom et al. 2010). With the use of these 
genetic factors, crop models can more accurately simu-
late how different genotypes perform in a range of soil, 
weather, and management scenarios. Because it requires 
costly and time-consuming field trials, estimating the 
genetic coefficients is the most complex part of crop-
climate modeling (Lamsal et  al. 2018). Because of this, 
determining the genotype specific parameters (GSPs) 
before using the cropping system model is challenging. 
For various Ethiopian maize cultivars, there have been 
efforts that have produced cultivar coefficients (Moham-
med et al. 2021, Liben et al. 2018; Kassie et al. 2014). For 
some maize cultivars cultivated specifically in the south-
ern central rift valley, cultivar criteria were not estab-
lished, though. Therefore, there is a compelling argument 
to calibrate the DSSAT maize model using cultivar coef-
ficients and to periodically update or parameterize crop 
modeling dataset with new cultivars (Holzworth et  al. 
2015).

It is feasible to estimate multi-year and multi-location 
data from breeder assessment studies across differ-
ent agro-climatic conditions by using the GSPs, which 
offer the genotype component of G × E × M interac-
tions (Lamsal et  al. 2018; Jones et  al. 2003). In actual-
ity, depending on the process and the crop model, the 
cultivar coefficients hold genetic, phenological, and 
physiological information of a specific crop variety, 
enabling simulations at the daily or, in some situations, 
hourly time steps. The crop’s vegetative and reproduc-
tive development stages are also reorganized, and the 
plant and soil water, nitrogen, phosphorus, and carbon 

balances are updated daily as the growing season pro-
gresses (Hoogenboom et  al. 2010). The DSSAT model 
then models growth and development in relation to 
GSPs, weather, soil, and crop management decisions. 
According to Jones et al. (2013), the genetic inputs are 
P1 (thermal time from seedling emergence to the end 
of the juvenile phase), P2 (measures development about 
photoperiod), P5 (measures the thermal time from silk-
ing to physiological maturity), and PHINT (thermal 
time between the appearance of leaf tips).

Because of susceptibility of current production sys-
tems to climate change, there are serious risks to the 
sustainability of maize production in the tropics. The 
performance of maize varieties in China (Zhang et  al. 
2021; Li et al. 2022), Nigeria (Tofa et al. 2021), and the 
East African area (Araya et al. 2015; Ojara et al. 2021) 
was predicted by a number of writers. According to 
their reports, China’s maize cultivation areas would 
decrease by 53% under the RCP 4.5 and RCP 8.5 emis-
sion scenarios in 1950s (Zhang et  al. 2021); in north-
ern Nigeria, the reduction would be as high as 43% by 
the end of century (Tofa et al. 2021), and in East Africa 
region would be as high as 40–60% during the mid 
century (Ojara et  al. 2021). Shorter growing seasons, 
pest and disease outbreaks, flooding and crop failures 
(Luhunga et al. 2018; Niang et al. 2014), rising air tem-
peratures (Luhunga et al. 2018), heat and water stresses 
(Pereira 2017), rising evaporative demand (Ongoma 
et  al. 2018), and declining water availability (Shivaku-
mar et  al. 2019) were the factors expected to cause a 
decline in yield. These factors ultimately limit land suit-
ability and productivity (Whisler et al. 1986). However, 
there is no assessment of how different kinds of maize 
varieties would react to a changing climate under RCP 
4.5 and 8.5 in the early, mid- and late centuries in the 
southern central rift valley of Ethiopia.

Prior to release, the maize CERES module in the 
DSSAT provides an opportunity to investigate the 
potential of any new cultivars and crop management 
techniques in various environments (soil, climate, and 
management) by analyzing growth duration, growth 
rate, and the degree to which stresses affect these 
processes (Ritchie and Nesmith 1991). Because the 
input files are cultivar-specific, a user may model crop 
growth, development, and yield for several varieties of 
maize with few modifications (Boote et al. 2010, 2017).

Keeping these imperatives in view, the present study 
was undertaken to determine the genetic coefficients of 
maize cultivars adapted to the southern central rift val-
ley of Ethiopia and to simulate the growth and yield of 
maize across various environments under present and 
future climate conditions.
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Materials and methods
Description of the study area
This study was carried out in southern plains of central 
rift valley of Ethiopia, located between 6° 22′ 48" N to 7° 
43′ 12″ N latitudes. The Western margin corresponds to 
37° 45′ 0″ E to 38° 40′ 48″ E longitudes, covering an area 
of 1,021,332 ha (Fig. 1). The study area has been divided 
into four distinct clusters (Shamana, Bilate, Hawassa and 
Dilla areas) (Markos et al. 2022).

DSSAT CERES‑Maize module
The International Benchmark Sites Network for Agro-
technology Transfer Project (IBSNAT, 1994) brought 
together a global network of scientists to produce 
DSSAT. Multiple previous versions of the DSSAT mimic 
crop growth, development, and yield by utilizing mini-
mal meteorological data, crop management data, and soil 
profile characteristics that have been preset. According 
to Jones et al. (2013), crop cultivar, planting date, row and 
plant spacing, fertilizer-N levels, tillage techniques, and 
organic amendments are some of the crop management 
parameters needed to calibrate the DSSAT model. Addi-
tionally, phenological stage inputs like blooming dates 
and days to maturity are included in the data. Maximum 
and lowest temperatures (°C), solar radiation (hr), and 
rainfall (mm) are the minimal meteorological data sets 

that are needed. Depth and the physical and chemical 
characteristics of the soil make up the parameters of the 
soil profile (Wang et al. 2021) on crop management were 
kept track of during the growing seasons. For the purpose 
of calibrating and validating the CERES-Maize module, 
input files such as weather, soil, experimental, and A & 
T (average measured data file, annual as well as tempo-
ral) were produced. For calibration, the CERES-Maize 
module needs a set of six cultivar-specific characteris-
tics (Table  3). Whilst the four (P1, P2, P5, and PHINT) 
regulate the timing of phenological phases, G2 and G3 
describe the potential yield under ideal circumstances 
(Hai-long et al. 2017).

Determination of crop genetic coefficients
Genetic coefficients particular to each cultivar are 
needed for the DSSAT crop model calibration in order 
to accurately depict the processes associated with growth 
and development under varying weather, soil, and man-
agement circumstances. Observed days to flowering, 
days to physiological maturity, and grain yield of maize 
cultivars, that were under field experiments between 
2013 and 2017, were used to estimate genetic coefficients 
(Deribew and Dawuro, 2012; Mekasha et  al. 2013; She-
genu and Tilahun 2015; Sorsa and Mesfin 2015). The 
genetic coefficients for the cultivars of maize BH-540 and 

Fig. 1  The study area map with the four distinct clusters 
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BH-546, as indicated in Table 3, were adopted from Liben 
et  al. (2018), Kassie et  al. (2014), and Mohammed et  al. 
(2021). However, BH-547, Shala (P2859W), and Shone 
(PHB30G19) cultivars do not have genetic coefficients 
in DSSAT that have been included before. The medium 
maturity cultivar group BH-546, which is already acces-
sible in the DSSAT for modification and use for BH-547, 
provided the initial values of the genetic coefficients. 
Since the cultivars Shala and Shone are pioneer hybrids, 
the medium maturing pioneer file (such as PIO-3183) 
was chosen from the DSSAT database and applied to the 
new cultivars by making modifications to it. To conduct 
the simulation, the computed crop specific parameters 
(CSPs) for the cultivars BH-547, Shala, and Shone were 
transferred into the MZCER048 CUL file. Through trial 
and error modifications, an iterative technique was uti-
lized to acquire an appropriate genetic coefficient until 
the dates of anthesis, physiological maturity, and grain 
production were matched between the simulated and 
observed values (Ma et  al. 2006). The obtained genetic 
coefficients were eventually applied to assess the effec-
tiveness of the model.

Historic weather
Historic weather data of the growing season during the 
last thirty years (1991–2020), including daily precipita-
tion (mm), minimum and maximum air temperatures 
(˚C), and sunshine hours were collected from different 
sources; including the Ethiopian Meteorological Institute 
(EMI), Hawassa Branch office and Hawassa Agricultural 
Research Center (HARC). In the absence of meteoro-
logical stations data, Climate Hazards Group Infra-Red 
Precipitation with Stations (CHIRPS) satellite rainfall 
data (https://​data.​chc.​ucsb.​edu/​produ​cts/​CHIRPS-​2.0/) 
were used (Dinku et  al. 2018; Belay et  al. 2021; Bayable 
et al. 2021). The CHIRPS data were shown to be identical 
to ground rainfall (p > 0.05) based on the t test, with the 
exception of a few stations (Mulungu and Mukama 2023). 

Solar radiation (MJ m−2 d−2) was derived from daily sun-
shine hours by using WEATHERMAN of DSSAT. The 
weather files were created by using WEATHERMAN 
module of DSSAT for running of the model.

Climate scenarios
The baseline daily climate data (1980–2010) were used 
to simulate the future climate across 20 GCMs (Global 
circulation models) with RCP (Representative concentra-
tion pathway) 4.5 and RCP 8.5. XLSTAT was used to pre-
pare the climate scenarios in the form required by DSSAT 
crop model (Rani et al. 2023). Future climate change data 
of contrasting multi-model ensembles of 20 Global Cli-
mate Models (GCMs) were accessed using Coordinated 
Regional Climate Downscaling Experiment (CORDEX) 
(Giorgi et  al. 2009) which were downscaled to 44  km 
horizontal resolution (https://​esgf-​node.​llnl.​gov/​search/​
esgf-​llnl/). Sponsored by the World Climate Research 
Program, CORDEX generated high-resolution future 
climate projections by downscaling GCM using differ-
ent regional climate models (Table 1). A 30-year window 
period representing climate projections by the near term/
early century (2011–2039), mid-term/midcentury (2040–
2069) and end-term/late century (2070–2100) was con-
sidered. First, moderate pathway emission scenario (RCP 
4.5) was selected, as the radiative forcing does not diverge 
in the different RCPs by the selected time horizon (Riahi 
et al. 2008; Moss et al. 2010; Willems and Vrac 2011).

RCP 4.5 represents the moderate emission scenarios. 
It is a stabilization scenario where total radiative forcing 
is stabilized around 2050 by employment of advanced 
technologies for reducing greenhouse gas emissions 
(Clarke et al. 2007). Next, the highest emission (RCP 8.5) 
or strong forcing scenario with 8.5 W/m2 is the extreme 
(warmest), under high population and advanced technol-
ogy was selected for each RCP, which is characterized by 
increasing greenhouse gas emissions and concentration 
in the atmosphere.

Table 1  The multimodal climate ensembles used to downscale climate data for East Africa

Source: http://​www.​csag.​uct.​ac.​za/​cordex-​africa

GCM/RCM CCLM 4.8 CNRM -CM5 HIRHAM 5 RACMO 22 T RCA 4 REMO Reg CM4 SOMD -ESD RCP 4.5 RCP 8.5

CNRM-CM5 √ √ √ √ √

GFDL-ESM2M √ √ √ √

ICHEC-EC-EARTH √ √ √ √ √ √ √

MIROC5 √ √ √ √

MIROC5-ESM √ √ √

MIROC5-ESM-CHEM √ √ √

MPI-ESM-LR r1 √ √ √ √ √

MPI-ESM-LR r1 √ √ √ √ √

NORESM1-M √ √ √ √

https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://esgf-node.llnl.gov/search/esgf-llnl/
https://esgf-node.llnl.gov/search/esgf-llnl/
http://www.csag.uct.ac.za/cordex-africa
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Soil characterization
The summary of the soil data collected and stored in 
the soil input file (Table 2). The soil texture, bulk den-
sity, soil moisture, pH, organic matter, total N, field 
capacity, wilting point, and saturated moisture content 

were captured for each cluster (Table 2). The top soils of 
the experimental sites were specified as silty clay, sandy 
clay loam, loam and clay in Shamana, Bilate, Hawassa 
and Dilla clusters, respectively.

Table 2  Physical properties of the experimental soils

Source: Demis and Beyene (2010), Wondimeneh (2010), Ayalew et al. (2015) and Jemal (2015)

SAT UL: saturation point upper limit; FC DUL: field capacity drained upper limit; PWP LL: permanent wilting point lower limit

Depth (cm) SAT
UL

FC DUL PWP LL Bulk density
(g/cm−3)

Texture

%Clay % silt % sand

Bilate

0–38 0.39 0.34 0.25 1.25 20 28 52

38–78 0.39 0.32 0.26 1.36 20 24 56

78–102 0.40 0.32 0.26 1.37 20 24 56

102–171 0.40 0.31 0.27 1.26 22 22 56

171 +  0.40 0.29 0.28 1.43 20 14 66

Dilla

0–38 0.41 0.28 0.13 1.2 51 21 28

38–78 0.38 0.25 0.15 1.32 29 41 30

78–102 0.38 0.26 0.19 1.34 47 33 20

102–171 0.39 0.27 0.20 1.42 35 29 36

Hawassa

0–25 0.52 0.26 0.11 1.36 22 38 40

26–69 0.52 0.24 0.09 1.36 24 36 40

70–115 0.43 0.22 0.07 1.55 26 30 44

116–131 0.40 0.20 0.05 1.57 32 34 34

132–157 0.36 0.18 0.03 1.63 10 40 50

158–187 0.31 0.16 0.02 1.58 10 54 36

Shamana

0–15 0.54 0.42 0.19 1.29 51 43 6

15–30 0.57 0.40 0.17 1.34 39 53 6

30–60 0.59 0.39 0.17 1.33 35 59 6

60–90 0.53 0.33 0.15 1.33 41 53 6

Table 3  Genetic coefficients of maize cultivars

Coefficient Definition Maize cultivars

BH
540

BH
546

BH
547

Shala Shone

P1 The span of time (measured in ◦C days, above a base temperature of 8◦C) between the emergence 
of seedlings and the conclusion of the juvenile phase, during which the plant is not susceptible to vari-
ations in photoperiod

245 253 260 250 320

P2 The amount that development (measured in days) is postponed for every hour that the photoperiod 
is extended over the longest photoperiod (which is thought to be 12.5 h)

0.60 0.7 0.8 1.42 0.52

P5 Thermal period (measured in ◦C days above a base temperature of 8 ◦C) from silking to physiological 
maturity

850 945 950 942 962

G2 Maximum possible number of kernels per plant 780 490 440 484 470

G3 Kernel filling rate during the linear grain filling stage under optimum conditions (mg day−1) 8.5 12.7 14.8 14.6 10.0

PHINT Phyllochron interval, the interval in thermal time between successive leaf tip appearances (˚C day) 48 49 54.4 48.4 74.91
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DSSAT crop model calibration
The genetic coefficients were used for model calibration 
together with, historic weather data, crop management 
and soil properties during 2014–2015 cropping season. 
Comparisons between observed and simulated maize 
yield and its attributes were evaluated using RMSE, 
d-statistic and R2 as shown in Eqs.  1, 2 and 3 (Abera 
et al. 2018).

where Xi and Yi are the observed and simulated values 
respectively and n is the number of observations. Small 
values of RMSE considered as indicators for good per-
formance of the DSSAT model. The RMSE values closer 
to zero imply a good fit between observed and simulated 
yields. A zero RMSE values mean that the model pre-
dicts the observations with perfect accuracy. The RMSE 
values closer to 0 indicate better agreement between the 
simulated and observed values. The second criterion i.e. 
the normalized RMSE (nRMSE) is expressed as the ratio 
between the RMSE and the average of the observed data.

where O− stands for the overall mean of observed values. 
The model simulations were considered excellent, good, 
fair, and poor, respectively, based on the nRMSE values 
of < 10%, 10–20%, 20–30%, and > 30%. The third criterion 
was the determination of index of agreement or d-statis-
tic (Willmott, 1982). It is used to measure the degree of 
the model prediction error, and the following Eq. 3 was 
used:

where Yi, and Ym are simulated and mean of the simu-
lated yield, respectively. Similarly, Xi and Xm are the 
observed and mean of observed yields, and n is the num-
ber of observations. The d values range between 0 (no 
agreement) and 1 (perfect fit). d values closer to 1 are 
considered as good performance of the DSSAT model 
(Yang et  al. 2014). The correlation coefficient (r) value, 
which is used to assess the strength of the association 
between the simulated and observed values in units rang-
ing from − 1 to 1, was the third criteria (Gupta et  al., 
1999). This is done in order to confirm the dependability 
of the model by statistical analysis, which includes cor-
relation determination (R2). Consequently, r evaluates 
the linear model’s "goodness of fit," with r = 1 denoting a 
perfect match and r = 0 denoting the absence of a linear 
relationship as shown in Eq. 4.

(1)RMSE (kgha−1
) =

√

∑

(Yi− Xi)2

n

(2)nRMSE =
RMSE ∗ 100

O−

(3)d = 1−

∑

(Yi− Xi)2
∑

(!Yi− Xm!+!Xi+ Ym!)2

where n is the number of model and observation data 
points, x is the model data, and y is the observation data.

Model validation
Model performance was evaluated by comparing the 
simulated versus observed values from the independent 
experimental data of 2016–2018 as reported by numer-
ous authors (Bejigo 2018; Loha and Hidoto 2018; Hidoto 
2021; Hidoto and Markos 2019). The comparison of 
observed and simulated data on anthesis date, physiolog-
ical maturity date and grain yield was carried out by ana-
lyzing the results from Eqs. 1, 2 and 3, mentioned above. 
These authors considered cultivars BH-540, BH-546, 
BH-547, Shala and Shone among others. All these cul-
tivars are medium maturity category, with varying yield 
potential and adaptability, but grown in areas with rain-
fall range of 450 to 750 mm.

Simulation experiment
Performance of five maize cultivars (BH-540, BH-546, 
BH-547, Shala and Shone) commonly grown across four 
locations (Shamana, Bilate, Hawassa and Dilla) was sim-
ulated using the cultivar parameters of each genotype, 
edaphic conditions and historic weather for each loca-
tion. For this experiment, recommended dates of planting 
(18th January for Shamana, May 1st for Bilate, April 20th 
for Hawassa and March 20th for Dilla), nitrogen applica-
tion (92 kg ha−1 N for Shamana, 46 kg ha−1 N for Bilate, 
92  kg  ha−1 N for Hawassa and 69  kg  ha−1 N for Dilla), 
and conventional tillage method and population (53,333 
plants ha−1) were employed. The second analysis consid-
ered climate data from contrasting multi-model ensem-
bles of 20 Global Climate Models (GCMs) and accessed 
by using Coordinated Regional Climate Downscaling 
Experiment (CORDEX) across RCP 4.5 and 8.5. The crop 
management inputs were similar in both experiments. 
Both simulation experiments were run under water and 
nitrogen limiting conditions representing current man-
agement scenario for rain-fed farming conditions during 
early, mid- and late century using a thirty year period as 
replications (Feleke et al. 2021).

Statistical analyses for simulation experiment
The outputs of DSSAT model for dates of anthesis and 
maturity, and grain yield at harvest were statistically 
analyzed using the analysis of variance (ANOVA) tech-
nique to evaluate the impact of climate change on maize 
production. Prior to ANOVA, homogeneity of vari-
ance across clusters was assessed using Levene (1960), 
O’Brien (1981), and Brown and Forsythe tests (1974). 

(4)R2
=

n(
∑

xy)−(
∑

(x)
∑

(y))
√

(n
∑

x2 −
(
∑

x)
2
)

(n
∑

y2− (
∑

y) 2)
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Accordingly, the five cultivars were evaluated across four 
locations for each GHGs emission scenario during base-
line, early, mid- and late century. The year effect, which 
has 30 levels, was used as replications (blocks) in the 
DSSAT software because the maize yield in 1 year under 
a given treatment was not affected by another year. Since 
each simulation year had unpredictable weather condi-
tions, formal randomization of simulation years was not 
needed (Chambers et  al. 2017). The ANOVA was cal-
culated using the SAS software package and treatments 
averages were separated using least significance differ-
ence (LSD) at 5% level of probability wherever difference 
between averages existed.

Cumulative distribution function (CDF)
This research also involved the analyses of an array in 
risks associated with growing the test maize cultivars 
under four geographic clusters. For the risk analyses, we 
employed the technique of non-exceedance probability 
(P). The non-exceedance technique is the probability that 
a yield value would be less than a user defined value dur-
ing certain time series and under a given technological 
level (Gobo and Abam 2006). For thirty-year time series 
data arranged in descending order with rank r, return 
period (T) = 1/r, then the non-exceedance probability 
(CDF) was approximated by a plotting position formula 
(Eq. 5)

where F is the probability associated with observation i, 
r is the rank number of the observation from highest to 
lowest, n is the number of observations and b is the slope 
between observations and years of occurrence. The slope 
enabled to weigh the contribution of each event to the 
computation of the non-exceedance probability. In con-
junction with risk analyses, we have also conducted the 
targeted yield analyses, of which the resulting informa-
tion helps in categorizing the farmers according to their 
attitude toward risk.

Estimation of yield changes under different climate 
scenarios
The biophysical impact of climate change across south-
ern central rift valley was obtained by calculating changes 
in crop yield between the current and the proposed adap-
tation responses for maize cultivars. Then the changes 
were calculated for each of the early, mid and late century 
periods, relative to the current practice for the respective 
GHGs emission scenarios. Accordingly, impacts of adap-
tation responses were computed based on Feleke et  al. 
(2021) as given in Eq. 6.

(5)Fi =
ri − b

n+ 1− 2b

where Yf—simulated yield of a cultivar under new emis-
sion scenarios; Yb—simulated yield of a cultivar under 
baseline scenario.

Results
Model calibrations for southern central rift valley 
of Ethiopia
Table 3 displayed the crop genetic coefficients that were 
obtained. The cultivars of BH-540, BH-546, BH-547, 
Shala, and Shone have P1 values of 245, 253, 260, 250, 
and 320 ˚C, respectively. In actuality, this indicates that 
the Shone maize variety arrived at the essential growth 
phases later than other cultivars since it needed more 
thermal time from the time the seedlings emerged to 
the conclusion of the juvenile phase. For the same cul-
tivars, the P2 was 0.60, 0.7, 0.8, 1.42, and 0.52  days in 
that respective order. Comparably, for BH-540, BH-546, 
BH-547, Shala, and Shone, the corresponding P5 values 
were 850, 945, 950, 942, and 962 ˚C day; G2 was 780, 490, 
440, 484, and 470; and PHINT was 48, 49, 54.4, 48.4, and 
74.1 in that same order. Thus PHINT that determines the 
length of vegetative growth in maize, which is longer in 
temperate climates but shorter in tropical ones is almost 
similar for all cultivar except Shone (Table 3).

Days to anthesis for BH-540, BH-546, BH-547, Shala, 
and Shone were 87, 82, 83, 78, and 82 during calibra-
tions, with corresponding error percentages of 5.7, 8.5, 
13.3, 7.7, and 4.9% (Table 4). The mean number of days to 
maturity for each study location was 136, 138, 155, 144, 
and 154, with corresponding error percentages of 2.2, 
2.9, 5.2, 6.9, and 2.6 in that respective order. For BH-540, 
BH-546, BH-547, Shala, and Shone, the correspondingly 
obtained grain yields were 5.7, 5.4, 5.2, 6.9, and 7.4 t ha-1 
with error percentages of − 0.1, − 0.8, − 1.0, − 6.1, and 2.6.

Model validation for southern central rift valley of Ethiopia
Days to anthesis during validation research were 81, 
75, 72, 72, and 78 for BH-540, BH-546, BH-547, Shala, 
and Shone, with corresponding error percentages of 
1.2, 7.4, 11.1, 7.7, and 4.9% (Table  4). With error per-
centages of 7.0, 6.0, − 2.8, 5.6, and − 4.2, respectively, 
the average days of maturity across research locations 
were 143, 134, 143, 142, and 144. With error percent-
ages of − 6.0, − 8.8, − 2.9, − 11.0, and 2.6 for BH-540, 
BH-546, BH-547, Shala, and Shone, respectively, the 
final grain yields that were obtained were 5.6, 5.3, 5.9, 
7.5, and 7.4 t ha−1. The error % was therefore greatest 
for days to anthesis, middle for days to maturity, and 
lowest for grain yield parameter. Days to anthesis for 
BH-540, BH-546, BH-547, Shala and Shone cultivars 

(6)Yield change(%) =

(

Yf − Yb
)

∗ 100

Yb
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were 82, 81, 82, 78, and 81 according to the validation 
results, with corresponding goodness of fit (R2) values 
of 0.82, 0.92, 0.90, 0.95, and 0.95 between observed and 
simulated estimations (Table  5). For cultivars BH-540, 
BH-546, BH-547, Shala, and Shone, respectively, had 
the goodness of fit (R2) between the observed and sim-
ulated anthesis date was 0.96, 0.94, 0.88, 0.92, and 0.89, 
displaying error percentages of 7.0, 6.0, − 2.8, 5.6, and 
− 4.2 (Table 5).

During the validation experiment, the RMSE results for 
grain yield, anthesis dates, and maturity dates were 0.2–
0.26 t ha−1, 2–11 days, and 7 to 9 days, respectively. These 
values equate to 3.0–3.9, 2.9–14.7, and 5.2–7.2%, respec-
tively, for normalized root mean square percentage; great 
ratings for grain yield and maturity dates, but good rat-
ings for anthesis dates, are indicated by these values. 
For the cultivars Shone, Shala, and BH-546, on the other 
hand, grain yield values were below the 1:1 line, indicat-
ing that the model underestimated grain yield (Fig.  2a). 
Grain yield’s regression line was roughly in line with the 
1:1 line, suggesting a better agreement.

For cultivars BH-540, BH-546, BH-547, Shala, and 
Shone, the d-statistic values were 0.77, 0.72, 0.95, 
0.95, and 0.76% in the event that there was a trend run 
between the observed and simulated values. Thus, better 
modeling agreement was shown by the d-statistic values.

Mean separation of days to flowering, days to maturity, 
and yield
Because variances of the data are equal (homogenous) 
across different locations, combined analysis was per-
formed for all locations. Results showed that vari-
ety Shala (7.6 t ha−1) produced significantly (P < 0.05) 
higher yield, compared to cultivars BH-540, BH-546 and 
BH-547 in Shamana cluster (Table  6). However, there 
was no statistical yield difference between yield values of 
variety Shala (7.6 t ha−1) and Shone (7.0 t ha−1). In Sha-
mana, BH-547 produced statistically lower maize yields 
(2.2 t ha−1). In Bilate cluster, cultivar Shone produced sig-
nificantly higher yield (5.4 t ha−1) compared to other cul-
tivars. In Hawassa cluster, cultivar Shone was statistically 
superior (9.2 t ha−1) to the other cultivars. The lowest 

Table 4  Observed and simulated values for days to anthesis, 
days to maturity and grain yield at harvest during model 
calibration using historic weather

ADAT—days to anthesis; MDAT—days to maturity; HWAMS—grain yield

Traits BH-540 BH-546 BH-547 Shala Shone

HWAMS

 Observed (t ha−1) 5.7 5.4 5.2 7.3 7.2

 Simulated (t ha−1) 5.7 5.4 5.2 6.9 7.4

 Error % − 0.1 − 0.8 − 1.0 − 6.1 2.6

 R2 1 0.98 1 1 1

 RMSE (t ha−1) 0.07 0.24 0.24 0.26 0.24

 nRMSE (%) 1.14 3.90 3.90 4.22 3.90

 d-Stat 1 0.98 0.79 0.84 0.69

ADATS

 Observed (days) 82 75 72 72 78

 Simulated (days) 87 82 83 78 82

 Error % 5.7 8.5 13.3 7.7 4.9

 R2 0.94 0.92 0.87 0.96 0.86

 RMSE (days) 7.07 6.52 6.5 6.49 7.07

 nRMSE (%) 9.3 8.6 8.6 8.6 9.3

 d-Stat 0.9 0.75 0.8 0.82 0.81

MDATS

 Observed (days) 133 134 147 134 150

 Simulated (days) 136 138 155 144 154

 Error % 2.2 2.9 5.2 6.9 2.6

 R2 0.89 0.87 0.98 0.87 1

 RMSE (days) 7.07 9.7 7.03 2.56 9.31

 nRMSE (%) 5.1 6.9 5.0 1.8 6.7

 d-Stat 0.78 0.65 0.92 0.74 0.81

Table 5  Observed and simulated values for days to anthesis, 
days to maturity and grain yield at harvest during model 
validation using historic weather

ADAT—days to anthesis, MDAT—days to maturity and HWAMS—grain yield

Traits BH-540 BH-546 BH-547 Shala Shone

HWAMS

 Observed (t ha−1) 5.9 5.8 6.0 8.3 7.2

 Simulated (t ha−1) 5.6 5.3 5.9 7.5 7.4

 Error % − 6.0 − 8.8 − 2.9 − 11.0 2.6

 R2 0.88 0.93 1 0.97 0.94

 RMSE (t ha−1) 0.20 0.24 0.24 0.26 0.24

 nRMSE (%) 3.0 3.6 3.6 3.9 3.6

 d-Stat 0.82 0.99 0.495 0.64 0.89

ADATS

 Observed (days) 81 75 72 72 78

 Simulated (days) 82 81 81 78 82

 Error % 1.2 7.4 11.1 7.7 4.9

 R2 0.82 0.92 0.90 0.95 0.95

 RMSE (days) 2.19 6.52 2.5 6.49 11.1

 nRMSE (%) 2.9 8.6 3.3 8.6 14.7

 d-Stat 0.71 0.85 0.64 0.72 0.81

MDATS

 Observed (days) 133 126 147 134 150

 Simulated (days) 143 134 143 142 144

 Error % 7.0 6.0 − 2.8 5.6 − 4.2

 R2 0.89 0.94 0.88 0.92 0.96

 RMSE (days) 7.35 9.79 7.03 9,28 9.31

 nRMSE (%) 5.4 7.2 5.2 6.7 6.8

 d-Stat 0.88 0.75 0.72 0.82 0.93
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yield in Shamana cluster was measured due to BH-546 
(7.1 t ha−1). In Dilla cluster, cultivar Shone produced 5.9 t 
ha−1, which is significantly higher than the other cultivars 
tested in this experiment.

Cumulative frequency distribution (CFD) of grain yield 
across clusters
Figure 3 below summarizes the risks of production for 
maize cultivars across the geographic clusters in South-
ern Region of Ethiopia; Fig.  3A shows that BH-540 is 
least productive under Dilla climate, where the risk of 

getting two tons ha−1 is 25%, while 6.8 t ha−1 of BH-
540 is produced at the same risk level under Hawassa 
climate. Despite there was a cross over between Sha-
mana and Bilate at the middle of the two curves, the 
remaining 50% of the data distribution showed a better 
performance for Shamana compared to Bilate. Under 
Shamana climate, achieving 5.8 t ha−1 of BH-540 is pos-
sible; but the associated risk is 75%. Further, achieving 
4.1 t ha−1 of BH-540 under Shamana climate is possi-
ble, but the risk would be 50% while 7.5 t ha−1 of the 
same cultivar is achieved under Hawassa climate at 50% 
risk. At 75% risk level, 2.2 t ha−1 of BH-540 is produced 
under Dilla climate, 4.8 t ha−1 at Bilate, 5.8 t ha−1 at 
Shamana and 9 t ha−1 under Hawassa climate. Overall, 
BH-540 is not recommended to be grown under Dilla 
climate, while Hawassa is the best for this cultivar.

Figure  3B shows that, cultivar Shone yields about 2 
t ha−1 under Dilla climate at 50% risk level. Under the 
same risk, Shone produces 5.8 t ha−1 at Bilate, 7.8 t ha−1 
at Shamana and 9.8 t ha−1 at Hawassa. At 75% risk level, 
2.2 t ha−1 of Shone is produced under Dilla climate, 
6 t ha−1 at Bilate, 8.1 t ha−1 at Shamana and 10 t ha−1 
under Hawassa climate. As can be noted from Fig. 3B, 
a risk averse farmer, targeting lower yields in Dilla clus-
ter, would plant cultivar Shone with the correspond-
ingly low risk; that is why the risk level to get 2 t ha−1 is 
also less than 25%. Figure 3C describes the productivity 
of cultivar Shala across the maize production clusters 
in the study area. Shala demonstrated results approxi-
mating the pattern of BH-540, except differences in 
absolute values. As can be noted, at 75% risk level, 2.4 t 
ha−1 of Shala is produced under Dilla climate, 5 t ha−1 
at Bilate, 5.5 t ha−1 at Shamana and 8.8 t ha−1 under 
Hawassa climate. At 50% risk level, Shala yields 2.2 t 
ha−1at Dilla, 4 t ha−1 at Bilate and Shamana, and 7.8 t 
ha−1 at Hawassa conditions. Although there are some 
inconsistencies, the responses of BH-540, BH-546 and 
Shala had similar pattern.

Fig. 2  Relationship between simulated and observed a grain yield b days to anthesis

Table 6  Means of simulated harvest yield (t ha−1) at maturity 
and anthesis dates using historic weather

*ADATS, MDATS and HWAMS represent simulated days to anthesis, days to 
maturity and grain yield

**Values followed by different letters show presence of significant difference at 
0.05% level of probability

Variety Clusters

Shamana Bilate Hawassa Dilla

HWAMS* (t ha−1)

 BH-540 3.9e** 3.9e 7.6bc 3.6e

 BH-546 3.6ef 3.9e 7.1c 4.1e

 BH-547 2.2g 4.3e 8.2b 3.4f

 Shala 7.6bc 4.1e 7.6b 4.1e

 Shone 7.0c 5.4d 9.2a 5.9d

 LSD0.05 0.77*

 CV (%) 18.01

ADATS (days)

 BH-540 81.1fg 69.7jk 83.3f 70.2ij

 BH-546 80.2g 66.7l 82.2g 71.5kl

 BH-547 77.2e 62.6i 80.2d 74.90h

 Shala 82.6f 69.1k 82.6f 70.9ijk

 Shone 84.7b 71.8de 89.0a 83.6c

 LSD0.05 2.13*

 CV (%) 2.81
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At 50% risk (Fig.  3D) BH-546 yields 2.2 t ha−1 at 
Dilla, 3.6 t ha−1 at Bilate and Shamana, and 7.2 t ha−1 
at Hawassa conditions. At 75% risk, the achievable pro-
ductivity of BH-546 is 2.4 t ha−1 under Dilla climate, 4.4 
t ha−1 for Bilate, 5 t ha−1 for Shamana and 7.8 t ha−1 for 
Hawassa climate. For BH-547 (Fig.  3E), the cross over 
between Shamana and Bilate shows cultivar BH-547 
is more productive at Bilate than Shamana at the lower 
technological levels, but using more advanced technol-
ogy turns high productivity i.e. for the upper side of the 
data distribution for the same cultivar. With the 75% risk, 
productivity is 2.5 t ha−1 for Dilla, 5 t ha−1 for Bilate, 6 
t ha−1 for Shamana and 9 t ha−1 for Hawassa. At 50% 
risk level, BH-547 yields 2.2 t ha−1 at Dilla, 4.5 t ha−1 at 
Bilate and Shamana, and 8 t ha−1 at Hawassa conditions. 
Such risk analyses help to categorize farmers into risk 
averse, risk neutral and risk takers. Obviously, the more 

the risk averse behavior, the more the downside produc-
tion risk and therefore, such famers remain reluctant to 
adopt improved technologies. Farmers aiming at higher 
yield (upside production risk takers) are more ready to 
adopt those technologies responsive to the production 
risk prevailing under a given climate. By disaggregat-
ing farmers according to their attitude towards risk, it is 
possible to transform those risk takers into commercial 
orientation by supporting them to adopt advanced tech-
nologies. Capacity building training is one such enabler. 
Dilla cluster showed the lowest potential for the produc-
tion of current maize cultivars thus rendering small-scale 
farmers, who merely rely on rain for maize production, 
vulnerable to climate risks. The low productivity could be 
due to unsuitability of the microclimate or broken adapt-
ability of cultivars as stated by Zhang et  al. (2021), and 
implies the need for renewal of hybrids and maize culti-
vars with merits of shade tolerance and adaptability for 

Fig. 3  Risk/probability of non-exceedance of harvested yield of maize varieties across the clusters
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cropping mixtures suitable for the environment. Adop-
tion of rigorous adaptation options including the use of 
seasonal forecasts during growing seasons would also 
aid through near real time agro-climate advisory services 
extension to the target users. Thus, the Dilla and Bilate 
CDFs lie entirely to the left of Shamana and Hawassa for 
all the higher risk levels, implying how Dilla and Bilate 
clusters have a high probability of failure in maize pro-
duction, compared to the Shamana and Hawassa clusters, 
and that at each point of maize yield, the later scenarios 
have less risk (Fig.  3A–F). This result signifies that the 
Dilla and Bilate clusters deserve strategies that foster 
climate risk adaptation responses under the current cli-
matic conditions.

Simulation of maize yield across baseline, early, mid‑ 
and late century
The median yield of BH-540 was 4.0, 5.9, 4.8, 4.3, 5.8, 
3.9 and 1.5 t ha−1 during baseline, early, mid- and late 
century under RCP4.5 and early, mid-and late century 
during RCP8.5 GHGs emission scenario, respectively 
(Fig. 4A). Similarly, 4.3, 5.7, 4.8, 4.0, 5.3, 2.8 and 1.5t ha−1 
is obtained from cultivar BH-546 during baseline, early, 
mid- and late century under RCP4.5 and early, mid-and 
late century during RCP8.5, respectively (Fig.  4B). The 
median yield of BH-547 was 4.5, 5.6, 4.3, 4.1, 5.8, 3.9 and 
1.7t ha−1 during baseline, early, mid- and late century 
under RCP4.5 and early, mid-and late century during 
RCP8.5, respectively (Fig. 4C).

Moreover, 4.4, 4.9, 4.1, 4.0, 5.5, 3.5 and 1.6t ha−1 of 
median yield is obtained from cultivar Shala during 
baseline, early, mid- and late century under RCP4.5 and 
early, mid-and late century during RCP8.5, respectively 
(Fig.  4D). The median yield of Shone was 4.5, 5.7, 4.2, 
3.7, 5.8, 3.3 and 1.3t ha−1 during baseline, early, mid- and 
late century under RCP4.5 and early, mid-and late cen-
tury during RCP8.5 GHGs emission scenario, respec-
tively (Fig. 4E). The best performance of cultivars Shone, 
Shala, BH-546 and BH-547 was obtained in the early-
century across RCP 8.5 than RCP 4.5 with maize yields 
over 6t ha−1 in some locations (Fig.  4). Thus, the yield 
change ranged from − 22% (Shone) to + 22.7 (BH-546) 
in Shamana, 1.4% (BH-546) to + 18.1 (BH-540) in Bilate, 
− 17.3% (Shone) to + 31 (BH-540) in Hawassa, − 11.5% 
(Shala) to 20.2 (BH-540) in Dilla under medium emission 
scenarios during 1950s compared to baseline (Fig.  5). 
Under high emission scenarios, yield deviations ranged 
from − 18.4 (BH-540) to − 37% (Shone) in Shamana, from 
− 3.6 (Shone) to − 26% (BH-546) in Bilate, − 24.7 (BH-
546) to − 49.2% (Shone) in Hawassa, from − 14.7 (Shone) 
to − 29.7% (BH-546) compared to baseline in Dilla dur-
ing 1950s (Fig. 5). Under high emission scenario during 
1970s, the performance of cultivar BH-540 was lower 

by 55.6, 62.5, 58.5 and 70% in Shamana, Bilate, Dilla and 
Hawassa clusters, respectively compared to baseline. For 
BH-546, the yield loss was 56.6, 68.9, 63 and 68.1%, in 
that order. The yield performance was reduced by 63.9, 
57, 64.8, 63.5% in BH-547; 63.4, 54.5, 59.9, 63.5 in Shala 
and 72.4, 52.6, 76.7 and 65.5% in Shone in that respective 
order compared to baseline.

Discussion
Genetic coefficients
The genetic coefficient differences in Table  3 can be 
explained by variations in the rate of development and 
accumulation of dry matter, as well as by differences in 
the characteristics of vernalization, photoperiod response, 
duration of grain filling, phyllochron interval, and num-
ber of grains per ear of each variety (Iglesias 2006; Adnan 
et al 2017). The greatest thermal time delay between suc-
cessive leaf tips, for example, was shown by the highest 
PHINT values (74.91 °C) for Shone, indicating a slow rate 
of leaf emergence. In the end, this establishes the capac-
ity to correct growth and yield variables while developing 
vegetative infrastructure. The range of the DSSAT cultivar 
database was met by the chosen and created cultivar-spe-
cific characteristics. Therefore, we may use model pro-
duced genetic coefficient for further studies.

Evaluation of DSSAT 4.8 model
A small yield range and a few days of inaccuracy are indi-
cated by the majority of the simulated and observed data, 
which is near to a 1:1 line (Fig. 2a and b). Other research-
ers have also reported that the DSSAT model underesti-
mated grain yield and harvest index while overestimating 
kernel mass, grain N, and total N uptake. They have attrib-
uted this to a very warm period during grain filling 
(Vucetic 2011; Araya et al. 2015; Abedinpour and Sarangi 
2018). This could be because water extraction under the 
simulation was done earlier than in field experiments with 
water deficit conditions (López-Cedrón et  al. 2008). As 
a matter of fact, the model has underestimated days to 
maturity in BH-547 and Shone and overestimated them 
in BH-540, BH-546, and Shala. According to previous 
research work, which showed a difference of up to 0.20% 
between simulated and observed with better modeling, 
the underestimating of simulated grain yield in this exper-
iment by 0.095% could be regarded as a good assessment 
(Alexandrov et al. 2001). Using the DSSAT CERES-maize 
model, Feleke et al. (2021) obtained a similar model over-
estimation result for late-maturing cultivars at Ambo. The 
relative mean square error (RMSE) and normalized root 
mean square percentages for grain yield, anthesis dates, 
and maturity dates correlate to good to adequate ratings, 
and the results were within allowable bounds; these find-
ings are consistent with those of Mohammed et al. (2022), 
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Feleke et  al. (2021), Kassie et  al. (2014), and Liben et  al. 
(2018). The grain yield parameter had the lower error rate, 
days to maturity had an intermediate percentage, and days 
to anthesis had the bigger percentage. As indicated by the 
negative error percentages, the model slightly underesti-
mated the grain yield for the Shala, BH-540, BH-546, and 
BH-547 varieties, while slightly overestimated the grain 
yield for the Shone variety (Table 4). For the majority of 
data, the d statistic, or index of agreement, was closer to 1. 

When the temperature difference between the daily maxi-
mal and minimal temperatures remain as small as possi-
ble, the DSSAT model appears to predict a higher rate of 
grain filling (Wilkens & Singh 2001).

Environmental effect on cultivars
A cultivar of Shala yielded 7.6 t ha−1 in the Shamana 
cluster, which is considerably (P < 0.05) greater than the 
yields of cultivars BH-540, BH-546, and BH-547. Cultivar 

Fig. 4  Maize yield (t ha−1) across RCP 4.5 and 8.5 during baseline, early, mid- and late century (RCP 4.5 and 8.5 stand for medium and high GHGs 
emission scenarios, E, M and L stand for early, medium and late century, respectively)
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Shone outperformed other cultivars in the Bilate clus-
ter, yielding a much greater yield (5.4 t ha−1). Cultivar 
Shone outperformed the other cultivars (9.2 t ha−1) in the 
Hawassa cluster. The Shamana cluster’s lowest yield was 
recorded because of BH-546 (7.1 t ha−1). Cultivar Shone 
outperformed the other cultivars evaluated in this trial, 
yielding 5.9 t ha−1 in the Dilla cluster. Shala and Shone 
were higher yielding cultivars that provided greater yields 
across varied environments. Thus, in order to increase 
performance from other cultivars, it is necessary to invest 
more in correcting susceptible traits of the cultivars. The 
Dilla cluster’s lowest yield (3.6 t ha−1) was attributed to 
BH-540. Throughout the 1990–2020 era, cultivar Shone 
exhibited substantially (P < 0.05) longer days to anthe-
sis across all clusters, whereas cultivar BH-547 showed 
significantly (P < 0.05) shorter days to anthesis across all 
clusters. Compared to the other cultivars, Shone or Shala 
may have a longer growth period and a faster growth rate, 

which might account for their higher grain production. In 
any event, the environment in Hawassa is ideal for these 
medium-maturing hybrids (Fig. 3), which may be because 
of the cluster’s rainfall and the rising trend in technol-
ogy usage. The Dilla cluster has the lowest potential for 
producing maize, which may be related to the region’s 
declining rainfall pattern (0.421 mm year−1 (Markos et al. 
2023a). In Bilate, Shamana, and Dilla, cultivars BH-540, 
546, and 547 seldom ever yield more than 4 t ha−1. The 
current conclusion is consistent with Sharada et  al. 
(2020) and Rising and Devineni’s (2020) recommendation 
that, in light of climate change, shifting crops, cultivars 
and locations used for maize production are essential 
measures. Some writers also suggested using breeding to 
adjust to climate change in order to correct related traits, 
which really calls for several selection cycles in maize 
breeding (Raisnanen and Raty 2003; Zhang et al. 2021).

Fig. 5  Yield change (%) of maize cultivars across RCP 4.5 and 8.5 during baseline, early, mid- and late century at Shamana, Bilate, Hawassa and Dilla 
clusters
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Performance of cultivars in the current and future climate
In historic climate conditions, Shone outperforms the 
other cultivars across production clusters consistently 
(Fig. 4). Other cultivars performed differently in different 
clusters. While cultivar BH-540 was the most adaptable 
to climate change in the 2050s, cultivar Shone was the 
least; other cultivars shown intermediate tolerance, even 
in scenarios with medium emissions. Cultivars cultivated 
in Ethiopia’s southern central rift valley will thus see 
a decline in yield in the 2050s (Fig. 5). This is true even 
though sub-Saharan Africa is expected to have a 60% rise 
in food demand, placing the southern Central Rift Valley 
at the most danger to food security (Alexandratos and 
Bruinsma 2012). If adaptation measures are not imple-
mented, maize yields in the 2070s might drop to between 
54.7 (cultivar Shala cultivated at Bilate) to 76.7% (cultivar 
Shone grown at Hawassa).

The present figure exceeds that of Rising and Devineni 
(2020), who predicted a 37% decline in corn yields in the 
states’ in 2070s under RCP 8.5. This is also in line with 
the conclusions of the IPCC (2018) evaluations, which 
confirmed the anticipated decrease in the productiv-
ity of vital cereals in Southeast Asia, Central and South 
America, sub-Saharan Africa. A variety of physiological, 
biochemical, and molecular processes resulting from an 
increase in extreme weather events, changes in pest and 
disease patterns, increases in minimum and maximum 
temperature, and variability in precipitation amount rela-
tive to early century period (2011–2039) could be the 
cause of the yield decline, which would ultimately reduce 
maize yield (Markos et al. 2023b; Zhang et al. 2021; IPCC 
2018). When compared to other hybrids, the output of 
high-yielding cultivars like Shone drastically declines, 
necessitating the need to increase adaption choices like 
as heat stress tolerance, drought tolerance, and resist-
ance to newly developing pests and diseases. However, 
given that yields were significantly lower than 2 t ha−1 
in the RCP 8.5, none of the cultivars now in use could 
withstand the impacts of rising temperatures and erratic 
rainfall. The potential impacts of these findings on future 
agricultural policies and practices highlights the need for 
improved germplasm suited for high-temperature and 
water-limited settings  (Van Ettana et  al. 2019). It might 
have been possible to decrease the sub-optimal perfor-
mance of cultivars during past and future weather con-
ditions by promptly disseminating high-quality weather 
advisory information and agricultural inputs (Mamo 
et al. 2013). However, countries are looking for zero hun-
ger in their Sustainable Development Goals (https://​sdgs.​
un.​org/​goals) to address food security issues. If these are 
to be realized, there should be a determined and ongo-
ing effort to maintain and improve parental lines, reduce 
greenhouse gas emissions, and address the potential 

causes of yield decline, which includes loss of hybrid 
vigor, breakage of adaptability, or deterioration of inbred 
lines of these three-way crosses during the late century. 
The potential benefits of implementing the suggested 
adaptation strategies is promising but the challenges of 
generating and adopting the adaptation strategies calls 
for prioritization by policy makers and investment in the 
sector in line with climate change adaptations.

Conclusion and recommendations
Studying how, maize, the second most extensively culti-
vated crop and its cultivars respond to various produc-
tion conditions under the current and projected climate 
is so essential under conditions of Southern Central 
Rift Valley of Ethiopia. Using field experimental data, 
the DSSAT version 4.8 was calibrated and validated for 
the environment. The normalized root mean square 
percentage, d-statistics and root mean squares of error 
for anthesis dates, maturity dates and grain yield dur-
ing calibration and validation can be classified as good 
to excellent ratings. These figures confirm that the 
DSSAT 4.8 modeling has been used effectively for the 
development and production of hybrid maize. The out-
comes of the 1:1 lines further demonstrated that, under 
the statistical significance level, the simulated findings 
and actual values agreed closely. In light of this, DSSAT 
version 4.8 may be advantageous for digitizing agro-
weather advisory services and distributing them to the 
intended customers in the study clusters. The simula-
tion experiment recommended the Shala variety (7.6 t 
ha−1) for the Shamana cluster and the Shone variety for 
Bilate (5.4 t ha−1), Hawassa (9.2 t ha−1), and Dilla (5.9 
t ha−1) clusters. Nonetheless, yields in the Shamana, 
Bilate, Hawassa, and Dilla clusters vary from 2.2 to 7.6, 
3.7 to 5.4, 7.1 to 9.2, and 3.3 to 5.9 t ha−1 in that order. 
Observations across the time period and emission sce-
narios revealed that cultivars Shala and BH-540 fared 
better against climatic change than cultivars BH-546, 
BH-547, and Shone throughout the early century. No 
investigated cultivar demonstrated tolerance to climate 
change throughout medium and high emission sce-
narios during the mid and late century, indicating the 
need for imperative decrease in greenhouse gas emis-
sions and widespread adoption of creative adaptation 
solutions, which actually calls for development of poli-
cies and guidelines that assure the cases in point. It was 
also inferred that farmers who take more risks can aim 
to produce higher yields from any cultivar in any of the 
locations, but they must use cutting-edge technologies 
and techniques to overcome the challenges involved 
in achieving their desired yields. Risk-averse farmers 
can seek lower yields in any of the clusters from any of 
the cultivars. Compared to the Shamana and Hawassa 

https://sdgs.un.org/goals
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clusters, the Dilla and Bilate clusters have a higher 
chance of risk in maize production, highlighting the 
priority needed for measures that improve responses 
to climate change and adaptation. A risk-taking farmer 
can aim for greater yields in any of the areas, but to do 
so, they must invest in better technologies and tech-
niques that will help them decrease the degree of risk 
they are targeting. Because lower rainfall areas will 
experience declining maize yields, appropriate adap-
tation strategies are needed to mitigate the danger 
of climate change. In addition, it is imperative that 
researchers, other scholars, and decision-makers move 
quickly to commence breeding initiatives for maize 
crop that target climate change adaptation and associ-
ated insect pest/disease resistance/tolerance in order 
to efficiently manage potential climate risks in the mid-
dle and late century periods. It can be deduced that the 
DSSAT version 4.8 could be effectively used to simu-
late the phenology, growth, and yield of hybrid maize 
plants grown in the southern central Ethiopian rift val-
ley. It could also be used to assess the impact of climate 
change and develop adaptation plans for both the cur-
rent and future climate.
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